|
GAMBIT
v1.5.0-2191-ga4742ac
a Global And Modular Bsm Inference Tool
|
|
def | convolve (file_name, frac_error=0.1, min_=0., max_=1., log_normal=True) |
|
Convolve chi-squared in a data file with a fractional theory error
==================================================================
python convolve_with_theory.py <file> <frac-error> <min> <max>
prints (parameter, convolved chi-squared) from a file containing
(parameter, chi-squared).
◆ convolve()
def convolve_with_theory.convolve |
( |
|
file_name, |
|
|
|
frac_error = 0.1 , |
|
|
|
min_ = 0. , |
|
|
|
max_ = 1. , |
|
|
|
log_normal = True |
|
) |
| |
Convolve chi-squared in a data file with a fractional theory error
Args:
file_name (str): Data file with columns (parameter, chi-squared).
frac_error (float, optional): Fractional theory error on the parameter.
min_ (float, optional): Minimum value of parameter.
max_ (float, optional): Maximum value of parameter.
log_normal (bool, optional): Whether to use log-normal or normal error.
Returns:
list(tuples): List of (parameter, convolved chi-squared)
Definition at line 19 of file convolve_with_theory.py.
19 def convolve(file_name, frac_error=0.1, min_=0., max_=1., log_normal=True): 21 Convolve chi-squared in a data file with a fractional theory error 24 file_name (str): Data file with columns (parameter, chi-squared). 25 frac_error (float, optional): Fractional theory error on the parameter. 26 min_ (float, optional): Minimum value of parameter. 27 max_ (float, optional): Maximum value of parameter. 28 log_normal (bool, optional): Whether to use log-normal or normal error. 31 list(tuples): List of (parameter, convolved chi-squared) 34 param, chi_squared = np.loadtxt(file_name, unpack= True) 37 like = interp1d(param, np.exp(-0.5 * chi_squared), 38 kind= 'linear', bounds_error= False, fill_value= "extrapolate") 43 sigma = np.log(1. + frac_error) 44 dist = lognorm(sigma, scale=mu) 46 sigma = frac_error * mu 47 dist = norm(mu, sigma) 51 integrand = lambda x, mu: like(x) * prior(x, mu) 52 convolved = lambda mu: -2. * np.log( 53 quad(integrand, min_, max_, args=(mu))[0] 54 / quad(prior, min_, max_, args=(mu))[0]) 57 return [(p, convolved(p)) for p in param] def convolve(file_name, frac_error=0.1, min_=0., max_=1., log_normal=True)
◆ ARGS
convolve_with_theory.ARGS = map(float, sys.argv[2:]) |
Definition at line 66 of file convolve_with_theory.py.
Referenced by Gambit::backend_functor< TYPE(*)(ARGS...), TYPE, ARGS... >.backend_functor(), Gambit::backend_functor< void(*)(ARGS...), void, ARGS... >.backend_functor(), Gambit::backend_functor< typename variadic_ptr< TYPE, ARGS... >::type, TYPE, ARGS... >.backend_functor(), Gambit::backend_functor_common< TYPE(*)(ARGS...), TYPE, ARGS... >.backend_functor_common(), Gambit::backend_functor_common< TYPE(*)(ARGS...), TYPE, ARGS... >.handoutFunctionPointer(), Gambit::backend_functor_common< TYPE(*)(ARGS...), TYPE, ARGS... >.inUsePtr(), Gambit::BEfunction_bucket< TYPE(*)(ARGS...), TYPE, ARGS... >.operator()(), Gambit::backend_functor< TYPE(*)(ARGS...), TYPE, ARGS... >.operator()(), Gambit::backend_functor< void(*)(ARGS...), void, ARGS... >.operator()(), Gambit::backend_functor< typename variadic_ptr< TYPE, ARGS... >::type, TYPE, ARGS... >.operator()(), Gambit::module_functor< ModelParameters >.print(), Gambit::BEvariable_bucket< TYPE >.safe_pointer(), Gambit::backend_functor_common< TYPE(*)(ARGS...), TYPE, ARGS... >.safe_version(), Gambit::backend_functor_common< TYPE(*)(ARGS...), TYPE, ARGS... >.setInUse(), Gambit::backend_functor_common< TYPE(*)(ARGS...), TYPE, ARGS... >.updatePointer(), Gambit::backend_functor< TYPE(*)(ARGS...), TYPE, ARGS... >.~backend_functor(), and Gambit::backend_functor< void(*)(ARGS...), void, ARGS... >.~backend_functor().
◆ FILE_NAME
convolve_with_theory.FILE_NAME = sys.argv[1] |
|